- Kampo-preparation -

TSUMURA Daikenchuto Extract Granules for Ethical Use

<table>
<thead>
<tr>
<th>Storage</th>
<th>Store in light-resistant, air-tight containers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expiration date</td>
<td>Use before the expiration date indicated on the container and the outer package.</td>
</tr>
</tbody>
</table>

DESCRIPTION

<table>
<thead>
<tr>
<th>Composition</th>
<th>15.0 g of TSUMURA Daikenchuto extract granules (hereafter TJ-100) contains 1.25 g of a dried extract of the following mixed crude drugs and 10.0 g of JP Koi. JP Processed Ginger 5.0 g JP Ginseng 3.0 g JP Zanthoxylum Fruit 2.0 g (JP : The Japanese Pharmacopoeia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactive ingredients</td>
<td>JP Magnesium Stearate JP Lactose Hydrate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Dosage form Granules Color Light grayish white Smell Characteristic smell Taste Sweet and pungent ID code TSUMURA/100</th>
</tr>
</thead>
</table>

INDICATIONS
TJ-100 is indicated for the relief of abdominal cold feeling and pain accompanied by abdominal flatulence.

DOSAGE AND ADMINISTRATION
The usual adult dose is 15.0 g/day orally in 2 or 3 divided doses before or between meals. The dosage may be adjusted according to the patient’s age and body weight, and symptoms.

PRECAUTIONS
1. **Careful Administration (TJ-100 should be administered with care in the following patients.)**
 Patients with liver dysfunction [Liver dysfunction may be aggravated.]

2. **Important Precautions**
 (1) When TJ-100 is used, the patient’s “SHO” (constitution/symptoms) should be taken into account. The patient’s progress should be carefully monitored, and if no improvement in symptoms/findings is observed, continuous treatment should be avoided.

(2) When TJ-100 is coadministered with other Kampo-preparations (Japanese traditional herbal medicines), etc., attention should be paid to the duplication of the contained crude drugs.

SHO: The term “SHO” refers to a particular pathological status of a patient evaluated by the Kampo diagnosis, and is patterned according to the patient’s constitution, symptoms, etc. Kampo-preparations (Japanese traditional herbal medicines) should be used after confirmation that it is suitable for the identified “SHO” of the patient.

Adverse Reactions
1) **Clinically significant adverse reactions**
 1. **Interstitial pneumonia** (incidence unknown): If cough, dyspnea, fever, abnormal pulmonary sound, etc. are observed, administration of this product should be discontinued, and examinations such as X-ray or chest CT should be performed immediately and appropriate measures such as administration of adrenocortical hormones taken.
 2. **Hepatic dysfunction and jaundice** (incidence unknown): Hepatic dysfunction, with increased AST (GOT), ALT (GPT), Al-P, and γ-GTP levels, and/or jaundice may occur. The patient should be carefully monitored for abnormal findings. Administration should be discontinued and appropriate therapeutic measures should be taken, if abnormalities are observed.

Approval No.
(61AM)3299

Date of listing in the NHI reimbursement price
October 1986

Date of initial marketing in Japan
October 1986

Storage
Store in light-resistant, air-tight containers.

###Expiration date
Use before the expiration date indicated on the container and the outer package.
PHARMACOLOGY

1. Enhancement of gastrointestinal motility
 (1) Oral administration of TJ-100 (7.5g) improved the transport ability of ascending colon in healthy American adults (n=19, scintigraphy)\(^3\).
 (2) Intragastric administration of TJ-100 enhanced the force and frequency of contractions of ascending colon, transverse colon and descending colon in dogs (Strain gauge transducer method)\(^4\).
 (3) Oral administration of Daikenchuto improved the chlorpromazine\(^5\)-or morphine\(^6\)-induced decrease in small intestinal and distal colonic transit in mice.
 (4) Daikenchuto induced contraction of the longitudinal muscle\(^7\) and suppressed contraction of the circular muscle\(^8\) in isolated guinea-pig ileum (*in vitro*).

2. Suppression of excess gastrointestinal motility
 Oral administration of Daikenchuto suppressed enhancement of small intestinal transit induced by carbachol in mice\(^9\).

3. Inhibitory effect on the development of ileus
 (1) Oral administration of Daikenchuto inhibited the delay of gastrointestinal transit in post-operative ileus in rats\(^9\).
 (2) Oral administration of Daikenchuto prevented intestinal adhesion induced by sprinkling talc on the small intestine in rats\(^10\).
 (3) Oral administration of Daikenchuto prevented the delay of intestinal transit induced by intraperitoneal injection of acetic acid in mice\(^11\).

4. Increase in intestinal blood flow
 Oral administration of TJ-100 (5.0g) increased the blood flow in superior mesenteric artery in healthy adults (n=14)\(^12\).

5. Secretion of gastrointestinal hormone
 (1) Oral administration of TJ-100 (7.5g) increased the plasma motilin concentrations in healthy adults (n=24) at 60 and 90 min. post-administration\(^13\).
 (2) Oral administration of TJ-100 (7.5g) increased the plasma concentrations of VIP and serotonin in healthy adult (n=6)\(^14\).
 (3) Oral administration of TJ-100 (7.5g) increased the plasma concentrations of calcitonin gene-related peptide (CGRP) and substance P in healthy adult (n=5)\(^15\).

6. Mechanisms of action
 Daikenchuto shows pharmacological effects via the following actions:
 (1) Enhancement of gastrointestinal motility
 - The improving effect of Daikenchuto on the decrease in small intestinal transit induced by chlorpromazine was suppressed by concomitant administration of atropine and a cholecystokinin-A (CCK-A)-receptor antagonist, lorglumide, to mice. The improving effect on distal colonic transit was also suppressed by atropine\(^5\).
 - Contractile effect of Daikenchuto on longitudinal muscle was suppressed by a 5HT\(_4\) receptor antagonist, high concentration of ICS205-930, but not by ondansetron (a 5HT\(_3\) receptor antagonist) in isolated guinea-pig ileum (*in vitro*).
Daikenchuto also enhanced the release of acetylcholine, and its contractile effect was suppressed by atropine or the concomitant application of atropine and a substance P receptor antagonist, spantide, in isolated guinea-pig ileum in vitro.

- Colonic motility induced by the intragastric administration of Daikenchuto in dogs was inhibited by the TRPV1 inhibitor, capsazepine.

(2) Suppression of gastrointestinal motility

Daikenchuto at low concentrations inhibited electrically-induced contraction but did not inhibit acetylcholine-induced contraction in the longitudinal muscle of a mucosa-free preparation of isolated guinea-pig ileum. It also inhibited contractions induced by KCl at high concentrations, and the inhibitory effect was reduced by pretreatment with CaCl2.

(3) Increase of gastrointestinal blood flow

- The increase of intestinal blood flow by Daikenchuto in rat was suppressed by a CGRP receptor antagonist, CGRP (8-37), and partially suppressed by a VIP receptor antagonist, [4-CI-DPhe6, Leu17]-VIP, and atropine, but was not suppressed by spantide.

- The increase in the small intestinal blood flow in rats occurred by intraduodenal administration of Daikenchuto performed under anesthesia was inhibited by the antagonist of TRPA1 receptor and anti-adrenomedullin antibody.

(4) Anti-inflammatory effect

- Daikenchuto increased in the production of ADM in IEC-6, rat small intestinal epithelial cell lines in the concentration-dependent manner (in vitro).
- Daikenchuto inhibited the production of inflammatory cytokines (TNF-α, IFN-γ) in colon of TNBS-induced inflammatory mouse model.
- Daikenchuto inhibited the cyclooxygenase (COX-2) activity (COX enzymatic activity assay kit, in vitro).

PACKAGING

Bottles of 500 g and boxes of 5 kg (500 g x 10 bottles)
2.5 g x 84 packets
2.5 g x 189 packets

REFERENCES